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The correction of measured integrated intensities for the first-order thermal diffuse scattering (TDS) is 
considered on the basis of the existing theory of X-ray thermal diffuse scattering for an elastic wave of 
long wave length. Generalized formula for the TDS correction ~ is found to be represented by a qua- 
dratic form in the Miller indices h, k, land a tensor AlL as ~ = Afllxh 2 + Aflz2k 2 + Af13312 + 2Aflx2hk + 2Aflz3kl+ 
2Afl3Jh. All is a tensor introduced in this paper which characterizes the anisotropy of the TDS correction. 
The form of the tensor Ap is shown to depend only on the crystallographic system. The relation between 
Ap and the temperature-parameter tensor is presented. 

Introduction 

Recently remarkable progress has been made in the 
accuracy of crystal structure analysis by means of X- 
ray diffraction from single-crystal specimens. Even for 
organic crystals and minerals, if they are not too corn- 

plicated, it is becoming possible to investigate bonding 
electrons between atoms and lone-pair electrons (e.g. 
Iwata & Saito, 1972) by analysis of charge-density 
distributions. In such analysis the reliability of the 
result depends on the accuracy of the observed struc- 
ture factors and a significant point in the discussion 
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is whether deconvolution of thermal and bonding 
effects is properly treated. 

In order to obtain the structure factors with suffi- 
cient accuracy, several corrections to the observed 
intensities are required. These are for Lorentz-polar- 
ization, absorption, extinction and thermal diffuse 
scattering (TDS) effects. Among them TDS correction 
is usually neglected except in some specific cases where 
accurate determination of the temperature parameter 
is the purpose of the studies. The correction involves 
the subtraction of the thermal diffuse scattering contri- 
butions, which contaminate, as sharp maxima, the 
measured integrated Bragg intensities. The effect of such 
TDS on a structure investigation with a single-crystal 
specimen was first studied by Nilsson (1957) and it was 
shown that the temperature parameters Bj in the 
temperature factors exp {-Bj(sin 0/2) 2} so obtained 
are apparently small if the correction is neglected. The 
amount of the correction in the temperature param- 
eter has been shown to depend on the softness of the 
crystal and has been estimated to be 15 % for example 
in the case of KC1. Thus one cannot neglect the TDS 
correction, as has been realized by a number of authors, 
especially in the detailed structure analysis of soft 
materials like molecular crystals. 

It has been pointed out, as one of the reasons for 
not applying the TDS correction, that the existing 
formulae for the TDS correction are restrictive in that 
they are applicable only to crystals of the cubic system. 
Furthermore, an assumption of elastic isotropy is made 
to avoid complex numerical calculation. In this situa- 
tion, generalization of the theory has recently been con- 
sidered by Skelton & Katz (1969) and Rouse & 
Cooper (1969). From their studies it became possible 
to evaluate the TDS correction for all crystallographic 
systems. However, there still remains some difficulty 
in deriving from their formulae a relation between 
the anisotropy of the TDS correction and the crys- 
tallographic system. 

In this paper we consider this problem in order to 
make clear such a relation on the basis of the assump- 
tion that the TDS which contributes to the measured 
Bragg intensity is only first-order thermal diffuse 
scattering due to acoustic modes of small wave number. 
We then show that the general formula is expressed as 
quadratic in the three indices h,k,l of the reciprocal 
lattice. In the formula a 3 x 3 symmetric tensor is 
introduced, the characteristics of which are determined 
by the crystallographic system. This tensor is closely 
related to the temperature-parameter tensor in the 
Debye-Waller factor. With the use of the formula the 
effect of the anisotropic TDS correction on the struc- 
ture analysis is discussed. 

TDS correction 

In the treatment of X-ray scattering from an ideally 
mosaic single crystal, the measured integrated inten- 
sity of the Bragg reflexion, I(Obs), is given by the sum 

of a contribution from the true Bragg reflexion: 
I(B), and contributions from the TDS, I(TDS); i.e. 

I(Obs)=I(B)+ ~ Ij(TDS) (1) 
J 

where Ij(TDS) indicates j th  order TDS, representing 
the scattering where j phonons are involved in the 
scattering process. Equation (1) can be written alter- 
natively as 

I(Obs)=l(B){1 + ~'o~j}, (2) 

if we define ~# as a ratio of the two components 
I#(TDS) and I(B). 

Among the Ij(TDS)'s, the TDS which has a pro- 
nounced maximum under the Bragg reflexion is the 
first-order TDS, ll(TDS), due to accoustic modes of 
small wave number q. The TDS due to optic modes is 
less important, because the frequencies of these modes 
are high and the dispersion curves are usually flat in 
the vicinity of the Brillouin-zone centre. The higher- 
order TDS, Ij(TDS) ( j>  1), also does not form ap- 
preciable peaks at the reciprocal-lattice points. For 
these reasons we shall neglect components due to such 
scattering and, therefore, consider in this paper ~a due 
to acoustic modes only. 

The corresponding cross sections for Bragg scat- 
tering and for first-order TDS due to acoustic modes 
of small q are well known (e.g. James, 1949), and the 
total intensity for the two types of scattering inte- 
grated over the vicinity of a reciprocal-lattice point 
are expressed as (Cochran, 1969) 

N23 S I(B)- vl2 sin 20 IF(B)I2 J(Q-B)d3Q 
~3 

II(TDS)= v2£2 sin 20 IF(B)I2 

(3) 

× S ~  [Q'eJ(q)]2 
• ~. co~(q) x Ej(q). j ( Q + q - B ) d 3 Q ,  

(4) 

where 

N: 
v: 
2: 

I2: 
20: 
B: 
Q: 

F(B): 

ej(q): 
o~(q): 
E:(q): 

~o: 

the following notations are used; 

number of unit cells in crystal 
volume of unit cell 
wavelength of X-rays 
angular velocity for recording the intensities 
scattering angle 
reciprocal-lattice vector 
scattering vector ([QI =4  zc sin 0/2). This is re- 
lated to B as Q _  B + q. 
crystal structure factor at the reciprocal lattice 
point B 
polarization vector of mode (j,q) 
circular frequency of mode (j,q) 
energy of mode (L q) 
density of crystal. 
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Integrating the 6-functions in equations (3) and (4), 
and substituting into equation (2), we have 

1 [Q.  ej(q)] z 
~ =  ~ -  Y. Y, .. . .  2 - -  Ej (q) .  (5) ecoj(q) q y 

Here the summation with respect to q is to be taken 
over the range of measurement and can be replaced by 
an integral 

Thus, we have 

Nv - + ~ I  d3q" (6) 

with 
1 S c q -  (2z03 Jl(q)d3q (7) 

[Q.  ej(q)] 2 
- -  Ej(q) ,  (8) 

where the summation over j is a summation over all 
possible acoustic branches: j = 1 , 2 , 3 .  J~(q) gives the 
intensity distribution in the vicinity of a reciprocal 
lattice point B. This is the most basic equation for the 
TDS correction due to acoustic modes (Cochran, 
1969). The anisotropy of the TDS correction can be 
derived from this basic equation. 

Formulation of ¢q 
In the measurement of the Bragg reflexion the volume 
swept ot/t in reciprocal space is in the vicinity of a 
reciprocal-lattice point, so that the lattice vibrations 
involved in the integral of equation (7) are only of 
small wave number. Such vibrations can be approx- 
imated very well by those of the elastic-continuum 
model for which the dispersion relation can be written 
as 

ogj(q) = Vj .  q ,  (9) 

where Vj is the velocity of elastic wave with polariza- 
tion vector ej and is given in terms of the elastic con- 
stants C~j as a solution of the following equation of 
motion for propagation of the elastic wave through the 
medium: 

ex(A ll - Q V 2) + eyA lz + ezA13 = 0 
exA~2 + er (Az2-QV z) + e~A23=O (9) 
exA13 + evAza + e~(Aaa - 0 V 2) = 0 ,  

where Azm is the lm component of a 3 × 3 symmetric 
matrix A. If ~p and ~ are the direction cosines of 
vector q referring to orthogonal axes x ,y , z ,  Azm is 
given in terms of the elastic constant Cl, t.4ra* by 

Arm= E Cpz,qmqpqq. (10) 
pq 

* The four suffices of C's are used in this expression but 
can be leduced to two. 

The full description of Arm is given in the Appendix for 
the most general crystallographic system. The asso- 
ciated polarization vector ej(q) is also given by sub- 
stituting the solution VJ back into the equations (9), 
but it becomes independent of q in this approximation. 
We shall therefore drop q from the notation of ej(q), 
leaving simply ej. Besides, we can equate Ej(q) to 
k s T  in this classical treatment of lattice vibrations. 

The anisotropy of ~ can be obtained by decom- 
posing the scalar product (Q.  e j) in equation (8) into 
components. We set up coordinate axes with reference 
to which components of both polarization and 
scattering vectors are given. The polarization vector 
can be specified with respect to the above set of orthog- 
onal x , y , z  axes for which the elastic constants are 
usually given. We shall thus employ this set of axes, 
so that 

ej = ejxi + ejyj + ejzk (11) 
Q = Qxi + Q,j + Qzk 

where i, j, k are the unit vectors along the axes. De- 
composing the scalar product (Q .  e j) and substituting 
it into equation (8), we obtain 

kBT (e'n " e'im) (12) 
J l ( q ) -  q2 ~t ~ Q,Qm ~j oVJ " bra 

In this expression we see that the summation over j 
forms a 3 × 3 symmetric tensor and in fact, with the use 
of the orthonormality relation 

E ejzejm=C~tm' (13) 
J 

we can easily derive the relation 

(ejz :e2m) _(A_l)tra,  (14) 
j 0Vj 

where (A-~)tm is the lm component of the inverse of 
matrix A. Equation (14) is the well known relation 
representing the anisotropy of the TDS in the theory 
of X-ray scattering (e.g. Takagi, 1961; Wooster, 1962). 
Substituting this relation into equation (12), we can 
immediately see that equation (12)is quadratic in Qz 
( l=x ,y , z ) :  

kBT 
J l ( q ) -  q2 ~tm (A-l)tmQtQm" (15) 

If we define a tensor Tzm as 

kBT I (A- 1) Zm 
Tim- (2/03 ~ q2 dZq , (16) 

the TDS correction cq reduces to the similar quadratic 
expression, 

oq = ~_, TtmaIam . (17) 
Ira 

In this treatment we have represented the scattering 
vector Q in terms of the Cartesian axes. However, it is 
rather inconvenient to represent it by this set of axes, 
because the scattering vector Q can always be rep- 
resented with a crystallographic reciprocal-lattice 
point for the case of the Bragg scattering. Thus, we 
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need to transform the Cartesian axes to the crys- 
tallographic reciprocal-lattice axes which, however, 
are not always mutually perpendicular. Introducing a 
linear transformation matrix a, we can write 

Qx = ~ m,,h,, , (I 8) 
D 

where hp is the abbreviated notation for the Miller 
indices h, k, l. By substitution of this relation (18) into 
equation (17), cq is given as 

~I= ~ ~ ao, am,~Tzmhph,~. (19) 
tp qm 

Since it is possible to define a tensor as 

/lflpa= ~_~ o',pO'mqTtm , ( 2 0 )  
lm 

equation (19) can be reduced again to a simple quadra- 
tic form in the three indices h, k, l, namely 

a~= ~, Aflp,~hph, 7 . (21) 
pq 

This is the most fundamental formula from which the 
TDS contribution to the measured Bragg intensities 
can be estimated for any type of Bragg point for any 
crystallographic system, if all the tensor components of 
All are evaluated. It should be noticed that the TDS 
contribution depends not only on sin 0/2, but also on 
the type of the reciprocal lattice point h, k, l; the ani- 
sotropy of the TDS correction among the reciprocal- 
lattice points is characterized by the tensor All. 

Cubic crystal 

If the crystal lattice is orthogonal, the Cartesian axes 
for which the elastic constants are given can be taken 
as parallel to the three crystallographic ones. Thus, the 
transformation matrix ~ is reduced to 

(i 0 0) = b* (22) 
0 c* , 

where a*, b* and c* are the reciprocal cell parameters. , ., , . , . .  .,: , . 
Obviously, a* = b * =  c* for the case of a cubic lattice, 
so that we have 

k n T  a .  2 q2 d3q • (23) I II 
Furthermore, since the elastic constants are reduced to 
three independent non-zero values Cn (=C22=C3a), 
C~2 (=  Cx3= C23) and C44 (=  Css = C66) in this case, 
A~m which is given in the Appendix is reduced simply 
to 

A11 ^2 ~2 "2 = Cllqx 21- C44qy  + C44qz 
A 2 2 =  C44q  2 JI- C110  2 "~- C , , q  2 

A33 = C444x z + C440 ] + CnO 2 
A ~2 = ( C~2 + C4a)O~0y (24a) 

A13 = (C12  + C44)qxOz 
A23 = (C12  + C44)Oyqz 

and (A-X)Zm is given as 

(A-X)n = (A22Aaa - A23A23)/A 
( A -  1)22 = (A xiA 33 - -  A 13,413)/A 
( A - 1)33 = (,4 11,4 22 - A 12,4 12) / 

(A-I)I2=(,423A13-Ai2Aa3)/A (24b) 
( A -  1)~3 = ( ,4 12A 23 - `4 ~2A 13)/ 

(A-X)23=(Ax2Ax3 - AnA23)/A 

where A =det  IA[. 

It is easily seen from the relations (24) that (A-1)zm 
has the following characteristics with respect to 0x, 
Oy and Oz" 

(1) For all l = m 
A-  1( __ Ox,O. Oz)11 = A -  l(Ox, - Or, qz)n 

= A -  l(0x,Oy, - Oz)n 
~ A _  1 A A 
- -  (qx,qy,qz)lt. (25a) 

(2) For all l #  m 

A-  1(__ qx,Oy,Oz)lm ~" - -  A- l(Ox,Ox,0~)zm 

- -  = (qx, qy,qz)tm A - l ( 0  x, Or,Oz)tm - A - 1  - - - 
A- l (_+  Ox, 0,0)tm =A- l (0 ,  + Oy, 0),,n 

=A- l (0 ,0 ,  + 0z)tm=0. (253) 

If we substitute these relations into equation (23) and 
then perform the integral over a volume which is 
symmetrical around a reciprocal-lattice point, we find 
that Al~zm = 0 unless l =  m so that Ap is given in matrix 
notation as 

fl22 0 (26) 
0 fl33 • 

The relation that all the off-diagonal components are 
zero arises from the characteristics of the tensor 
(A-1)z,,, [see relations (25)]. We can also see from the 
relations (24) that all the diagonal components Allu 
are identical in the case of a cubic system. Thus, we 
obtain a formula for the cubic system, 

(X 1 = fllx(h 2 -it- k 2 -~- 12) .  ( 2 7 )  

In general, the integral of Afln is not easy to evaluate 
analytically since it involves the triple integral, as can 
be seen from equation (23). Therefore, several approx- 
imations have been considered (Nilsson, 1957; Pryor, 
1967; Cooper & Rouse, 1968; Jennings, 1970). If the 
approximation replacing the volume swept out in 
reciprocal space by a sphere of radius qm (Pryor, 1967) 
is adopted, the radial part of the integral can be per- 
formed separately. Thus, the triple integral is reduced 
to a surface integral: 

kBT 
A f l l l =  (-~) a a*2qm I I ( A - 1 ) l l d Q  

surface 

(28) 
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where qm is the radius of the sphere and dO is sin 0d0&p. 
If the isotropic approximation for the elastic constants 
C l t  = C1z-t-2C44 i s  available, we have 

1 ( 1 1 ) 
( A - ~ ) ' =  C~-~ + C,4 C n  (~+~2)  (29) 

and the surface integral can be immediately performed 
as 

4n 1 2 

surface  

Therefore, we obtain 

Aflii = knT qra ( l 2 ) a . 2  (31) 
2n 2 3 -~-i1+-~-44 

and the TDS correction c~ can be written as 

QZknTq" (32) 
o~ = 2n2C 

where 

and 
Q = a* [/ h2 + k2 + l 2 

3 1 2 
- -  "Ji- - -  

C Cn C44 

This is the formula given by Cochran (1969) for the 
case of a cubic crystal having isotropic elastic con- 
stants. It will be clear that the formulae (27) and (32) 
are described as a special case of the present expression 
(21). 

Characteristics of All 

It was shown that the TDS correction ~1 can be given 
as quadratic in h, k, l and a new tensor All introduced. 
In this section general properties of this tensor All will 
be presented. 

As seen in the Appendix the matrix A is symmetric, 
so that inverse of this, A -1, is necessarily symmetric. 
Referring to equation (16), it is easily seen that tensor 
T is also symmetric. This property ensures that the 
tensor All given by equation (20) is also symmetric, 
even if the transformation matrix ~ is not. Thus, we 
have Aflp~ = Aflqp as a general property of All. 

In above section it was shown that All reduces to a 
diagonal tensor with A f t ,  = Aft= = Aft33 if the crystal is 
cubic. This diagonal property of All is also found for 
the case of the orthorhombic system, although the 
three components Afln, Aft22, Aft33 are no longer 
identical. For the case of tetragonal system, for ex- 
ample, Afla3 is different from the other two. This 
characteristic comes from the fact that (A-~)a3 is not 
identical with (A-i)n ,  since the elastic stiffness con- 
stants C~a, Ca3 and C66 are not equal to C12, Cn and 
(744, respectively, in the case of the tetragonal system. 

It is easy to see from this example that tensor Aft is 
strongly related to the matrix form of the elastic 
stiffness constants. We see that such a relation ori- 
ginates in the fact that the TDS contribution to the 

Bragg intensity comes mainly from the first-order 
thermal diffuse scattering due to acoustic waves of 
long wavelength, the velocity of which is completely 
described by a set of the elastic stiffness constants. In 
general, with the use of similar considerations the 
relations in Table 1 are found to exist between the 
tensor form All and the crystallographic systems. 
Detailed verification of these relations will be pre- 
sented in a separate paper. 

Table 1. The tensor Ap 
for  the different crystallographic systems 

Cubic Tetragonal 
0 0) 0 

0 Afln 0 0 Aft.  
0 0 Aflll 0 0 

Orthorhombic Hexagonal 

0 A/722 0 x A/~. 0 
0 0 Aft33 0 Aft33 

Triclinic and trigonal 
( Aflxl Af112 Afl13 ) 

Afll2 Aft22 Aflia 
Afll3 Af123 Aft33 

Monoclinic 
( Afln 0 Aft13 ) 

0 Aft22 0 
A]~13 0 Z~33 

0) 
0 

A~33 

Influence of  T D S  on structure analysis 

As Nilsson (1957) predicted, neglect of the TDS cor- 
rection in structure analysis has an effect on the 
temperature parameters. A qualitative idea of the 
effects can easily be gained from the characteristics of 
the tensor Ap. 

In equation (2) the TDS correction ~ can usually be 
considered to be a small quantity compared with one, 
so that, neglecting the higher-order correction terms, 
equation (2) can be replaced by 

I ( B ) =  I(Obs) exp ( -hAph) ,  (33) 

where c~ is represented in matrix notation as hAph, 
and h being row and column matrices with three 

components h, k, l respectively. If the observed inten- 
sity data I(Obs) are not corrected for the TDS and then 
they are applied to the crystal structure analysis, the 
intensities themselves are treated as proportional to 
the squares of the structure factors. Thus 

I(Obs)=s[ ~ f k  exp (--Wk) • exp {i(Q. rk)}l 2 (34) 
k 

where s is the scale factor, fk and rk are the structure 
amplitude and the position vector of kth atom, and 
wk is the exponent of the temperature factor for the 
kth atom. Using the temperature parameter tensor 
ilk, wk can be represented in matrix notation as 

wk=~Pkh. (35) 

Substituting into equation (32), we immediately see 
that the temperature factor is modified to be 

exp ( -  (hllk + ½All)h}. (36) 

A C 3 0 A -  6 
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This means that the true temperature-parameter tensor 
ilk ~u~ is given by the sum of the tensor ilk and half of 
the TDS tensor All as 

ll~u~ = ilk +½All. (37) 

It should be noticed that the tensor forms of ilk and 
All are different in general, ilk is regarded as depending 
on the symmetry of the position in which the kth atom 
is located and is obtained from the least-squares 
analysis, while All depends only on the crystallographic 
system. This indicates that the thermal ellipsoid ilk is 
modified from the true ellipsoid ll~uo by an amount of 
½All, if the TDS contribution to the Bragg intensity is 
not considered. A change in the directions of the 
principal axes of the thermal ellipsoid is also con- 
ceivable. 

The magnitude of All will be largest for materials 
with low elastic constants, such as molecular crystals. 
Thus, for these soft materials it is particularly im- 
portant to correct for TDS in the accurate analysis of 
the electron-density distribution. 

Discussion 

We have shown that the general expression for the 
correction of measured integrated intensities for ther- 
mal diffuse scattering is expressed by relation (21) for 
a crystal of any symmetry, if only the first-order TDS 
due to acoustic modes is considered as a significant 
contribution. As discussed by Cochran (1969) and 
Rouse & Cooper (1969), however, the effect of experi- 
mental resolution is important, although this correc- 
-tion is too laborious to make in practice. In the present 
formulation this may be performed b y  replacing .the 
TDS tensor AflZm by 

AmR) k s T ~  
17il • (7i m ~lJlm (27C) 3 ,=t 2=1 

"" x I I  R(q') {A-l(q-q')}zmd3q'd3q, (38) 
Iq-q'l z 

q q' 

where R(q') is the resolution function (Als-Nielsen & 
Dietrich, 1967; Cooper & Nathans, 1968). 

In the present paper we have been concerned with 
the case of X-ray diffraction only, but the whole theory 
can be also applied to the neutron-diffraction case, 
provided that the incident neutrons are faster than the 
velocity of sound in the crystal, as has been pointed 
out by Willis (1969, 1970). 

For the application of the present TDS formula to 
practical analysis the triple integration of equation 
(16) has to be evaluated, even if we neglect the effect 
of the instrumental resolution. This is a laborious 
task and therefore several approximate methods have 

been proposed for the case of the cubic crystal. These 
approximations will be applicable for the general case, 
but the approximation replacing the volume swept 
out in reciprocal space by a sphere of the same volume 
seems to be the most convenient in the present formula. 
The practical method of evaluation and comparison 
with other calculations and observations will be given 
in a separate paper. 

APPENDIX 

Az.,= ~ C , , , . ~ . ,  . O, ,  . O~ 
p q  

A is a symmetric 3 x 3 matrix and the independent six 
elements of A are given in the explicit formulation as 
follows: 

AI I __. ~2 ~2 C.q~ + C66q~ + CssO 2 + 2C560y0~ + 2 C . 4 ~  
+ 2C~60~4y 

A2 2 ~.~ ^2 ~2 -2 . . . .  C66qx q- C22qy -~- C44qz q- 2C24qyqz -}" 2C46qzqx 
+ 

A33 --- 

-t- 

A12 
+ 

.//13 
+ 

A23 
+ 

2C26qxqr 

C55t~x 2 -t- C440 2 -t- C3302 "-~ 2C340,0z + 2CasOz4~ 
2c4~OxO, 

~2 ^2 ~2 Cl6qx -~- C26qy q- C45qz q- (C25 a t- C46)4y~z 

(C14 + Cs6)4zO:~ +(Cxz + C66)4~4y 
C15qx 2 -~- C46q 2 -t- C35q 2 -Jr- (C36 -t- C45)qyqz 

(cx3 + c5~)4z4~ + (c14 + cs6)4x4, 
C561~ 2 --1-- C241~ 2 -~- C341~z 2 -Jr- (C23 + C44)qy4z 

(c36 + c4s)4z4x + (cz5 + c46)4x4~ 
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